Design, Synthesis, Biological Evaluation and Molecular Modeling Study of Novel Indolizine-1-Carbonitrile Derivatives as Potential Anti-Microbial Agents
Authors
Abstract:
A novel one-pot two step tandem reaction for the synthesis of indolizine-1-carbonitrile derivatives (5a-i) was identified. The route comprises 1,3-dipolar cycloaddition reaction of aromatic aldehyde derivatives (1a-i), malononitrile (2) and 1-(2-(4-bromophenyl)-2-oxoethyl)-2-chloropyridin-1-ium (4) under ultrasound irradiation at room temperature in the presence of triethylamine at acetonitrile. The product compounds were tested against bacteria and fungi. It was revealed that compound 5b had the most antifungal activity (range MICs = 8–32 µg/mL) and compound 5g had the most antibacterial activity (range MICs = 16–256 µg/mL). Molecular docking of compounds (5a-i) into fungal 14α-demethylase and bacterial protein tyrosine phosphatase active sites were also performed and probable binding mode of compounds 5b and 5g were determined.
similar resources
Design, Synthesis, Molecular Modeling Study and Biological Evaluation of New N'-arylidene-pyrido[2,3-d]pyrimidine-5-carbohydrazide Derivatives as Anti-HIV-1 Agents
In an attempt to identify potential new agents that are active against HIV-1, a series of novel pyridopyrimidine-5-carbohydrazide derivatives featuring a substituted benzylidene fragment were designed and synthesized based on the general pharmacophore of HIV-1 integrase inhibitors. The cytotoxicity profiles of these compounds showed no significant toxicity to human cells and they exhibited anti...
full textDesign, Synthesis, Molecular Modeling Study and Biological Evaluation of New N'-arylidene-pyrido[2,3-d]pyrimidine-5-carbohydrazide Derivatives as Anti-HIV-1 Agents
In an attempt to identify potential new agents that are active against HIV-1, a series of novel pyridopyrimidine-5-carbohydrazide derivatives featuring a substituted benzylidene fragment were designed and synthesized based on the general pharmacophore of HIV-1 integrase inhibitors. The cytotoxicity profiles of these compounds showed no significant toxicity to human cells and they exhibited anti...
full textDesign, synthesis and biological evaluation of novel quinazoline derivatives as potential antitumor agents: molecular docking study.
Novel derivatives of quinazoline (1-27) have been synthesized and tested for their antitumor activity against three tumor cell lines among these cell lines the human breast carcinoma cell line (MCF-7) in which EGFR is highly expressed. All tested compounds showed potent and selective activity against breast cancer (MCF-7) with IC(50) range of 3.35-6.81 microg/ml. With regarding broad-spectrum a...
full textDesign, Synthesis, Molecular Modeling Studies and Biological Evaluation of N'-Arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide Derivatives as Novel Anti-HCV Agents
HCV-induced hepatitis is one of the most debilitating diseases. The limited number of anti-HCV drugs and drug-resistance necessitate developing of new scaffolds with different mode of actions. HCV non-structural protein 5B (NS5B) is an attractive target for development of novel inhibitors of HCV replication. In this paper, new N'-arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazi...
full textDesign, Synthesis, Molecular Modeling Studies and Biological Evaluation of N'-Arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide Derivatives as Novel Anti-HCV Agents
HCV-induced hepatitis is one of the most debilitating diseases. The limited number of anti-HCV drugs and drug-resistance necessitate developing of new scaffolds with different mode of actions. HCV non-structural protein 5B (NS5B) is an attractive target for development of novel inhibitors of HCV replication. In this paper, new N'-arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazi...
full textMy Resources
Journal title
volume 17 issue 3
pages 883- 895
publication date 2018-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023